
RDM – RELATIONSHIP DIAGRAMING METHOD

Fredric L. Plotnick, Esq., P.E., Drexel University in Philadelphia, Pennsylvania

Abstract
Recent Enterprise CPM developments focus upon
activities and away from the relationships between
activities that was the hallmark of the original ADM
and PERT methodologies. This paper proposes a
system to address these issues, designated as RDM or
Relationship Diagramming Method.

RDM documents the reason for a restraint between
two activities. It expands the types of relationships,
distinguishing partial performance, passage of time and
a new “concurrent relationship.” The RDM algorithm
provides trend durations based upon actual
performance to date and an automated assignment of
optimistic and pessimistic durations for an integrated
Monte Carlo analysis.

ADM was developed in 1956 and PERT in 1958
based largely upon the limitations of computers of that
era. PDM was developed using the more, but still
limited power of computers in 1964. RDM provides
for better planning and scheduling than traditional or
current implementations of CPM using the computers
of the 21st century.

Key Words: CPM, ADM, PDM, RDM, RDCPM™.
These refer to Critical Path Method of Planning &
Scheduling, Arrow Diagramming Method variant,
Precedence Diagramming Method variant, and the
proposed Relationship Diagramming Method variant
and Relationship Diagramming CPM standard. Also
PERT or Program Evaluation Review Technique.

This paper is an update of last year’s presentation on
RDM. The new format of RDM, or the Relationship
Diagramming Method variant of CPM (Critical Path
Methodology) of Planning and Scheduling was
introduced in 2005 in the 6th edition of the industry
bible, CPM in Construction Management, O’Brien and
Plotnick, McGraw-Hill. Further details were presented
at the PMI College of Scheduling annual conference by
Fredric Plotnick, in April of 2006, as noted in ENR
(06/05/06.)

Historical

The original format for CPM, developed fifty years ago
in 1957, has since been renamed as ADM or Arrow
Diagramming Method (also called AOA for Activity-
on-Arrow) to distinguish it from the PDM or
Precedence Diagramming Method (also called AON
for Activity-on-Node) variant which was first
implemented in 1964. Another variant of the same era

was PERT or Program Evaluation Review Technique
developed by the U.S. Navy for development of the
Polaris Missile System, and which focused more upon
defined milestones than upon the loosely defined
activities between such milestones.

All three formats included weaknesses due to the
limitations of computers of that era. The original
ADM and PERT formats were designed to operate on
computers lacking random access memory (RAM) and
limited to linear access memory. Old cartoons
illustrating computers with large reel-to-reel magnetic
tape (or even punched paper tape) provide an
indication of the limitations that the early software
designers had to overcome. Many of the arcane rules
of older CPM specifications, such as “skip numbering”
(or identifying events as 5, 10, 15, rather than 1, 2, 3)
are founded in these historical limitations.

The manufacture by IBM of the new computer
architecture including random access memory, and thus
the ability to rapidly switch between two files, one for
activity name and duration, the other for the
predecessor-successor restraints between activities,
permitted the implementation of PDM. However,
computers still had quite limited memory and were
relatively slow and expensive. Each computation of
the critical path was typically an overnight affair and
could cost up to several hundreds of dollars! The
advent of the personal computer in the 1980s largely
reduced the cost, but in an effort to speed the
computation, software designers jettisoned some of the
features of the mainframe programs that may increase
accuracy of the results in certain circumstances. Thus
the ability to distinguish between starting activity B
three days after a ten day duration activity A has
started (and without regard to continued progress after
day one,) from starting activity B when 30% of activity
A was complete was dropped.

Introduction

In the research leading to the release of the 6th edition
of CPM in Construction Management, Mr. Plotnick
reviewed the original mathematics of the early 1950s
leading to CPM and PERT, and has reformulated and
expanded both the algorithm for calculations and the
formats for data entry and reports. Although some
portion of this information may be stored and reported
from extensions to existing PDM software, it is
important to understand that RDM is as different from

PDM as are ADM and PERT. The main distinction is
the redefinition of the differences between events,
activities and restraints. Additional distinction range
from the introduction of new attributes (such as a Just-
in-Time start, finish and float, discussed below) to the
appreciation that the relationship between two
activities is more than restraint between activities (also
discussed below.)

Just as CPM and PERT were distinguished from bar-
charts and milestone charts by the recording of
additional information used to create those charts (and
thus automating the process of utilizing that
information,) so too RDM is distinguished from the
older versions of CPM and PERT by recording more of
that information. This additional information may be
generally classified into five additional groups of code
fields:
• events and event codes
• the reason/why restraint code, additional

description as to the reason why a restraint has
been placed between two activities,

• duration codes to explain a given duration and how
such should be used in calculations,

• additional and expanded types of restraints
between activities (and events,) and

• relationship codes to further indicate the
relationship between two activities.

Events and Event Codes

The primary fundamental aspect of RDM is the
reintroduction of the concept of an event, or point in
time, that was the hallmark of both ADM and PERT
but was eliminated in the implementation of PDM.
However, RDM expands the use of events and
attributes of events, and largely redefines the concepts
of an activity and a restraint. In ADM, an activity is
placed between two events, and an event is properly
placed only at the start or finish of one or several
activities. In RDM, while an activity is still placed
between two events, an event may be placed at the start
or finish of only one activity. More significantly, an
event may be placed within an activity or be totally
independent of any activity. Thus the scope or
definition of partial completion of an activity may be
noted at such an internal event and true milestones
(rather than merely zero duration activities) may be
defined.

Events do not have an early start or early finish, nor a
late start or late finish. Events, being a point in time,
merely have an early occurrence and late occurrence.
Historically, these were referenced as TE and TL,
referring to “time-early” and “time-late,” in the early
writings on CPM and PERT. A special problem exists
in converting “times” to “dates” in most CPM and
PERT applications since most calendars are

discontinuous. Unless the only calendar is a 24/7/365
calendar, then Monday afternoon at 4:00 P.M. is the
same “time” as Tuesday morning at 8:00 A.M. This
issue is exacerbated by weekends, holidays and
seasonal shutdowns (11/15 to 3/15.) Thus, a code field
must be reserved for reporting event times as the
preceding (evening) or succeeding (morning) date
associated with that time. (As a aid to memory, it may
be remembered that Genesis reports the date of
creation to be “the evening and the morning of the first
day.”)

A number of event code fields in RDM are devoted to
recording whether an event is preceded or succeeded
by an activity, counting the number of restraints
preceding and/or succeeding an event, and similar
tallies. These may include counting “exclusive
predecessor restraints” and “exclusive successor
restraints” where such are the sole restraint emanating
from or to the event at the other end of the restraint.
Where several events “exclusively” share the same
predecessor events, these may be designated as
concurrent events, similar to the ADM i-node common
to several activities.

The TE (time-early) of an event in ADM or PERT, or
ES (early start) of an activity in ADM or PDM, is
calculated as the latest TE or ES of all predecessors. So
too for most events in RDM. However, RDM also
recognizes other choices for independent events not
linked (at the beginning or end) of an activity. These
choices include:
• do upon the completion of the 1st, 2nd, nth, or last

predecessor (note last is traditional default,)
• follow restraint ONE if 3rd event status is (not

occurred, occurred,) otherwise restraint TWO,
• follow restraint ONE if 3rd activity status is (not

started, started not finished, finished) , otherwise
restraint TWO,

• follow restraint ONE if random number w/i set
limit, otherwise restraint TWO, and

• follow restraint ONE if random number w/i limit
#1, TWO if w/i limit #2, N if w/i limit #N,
otherwise default restraint

Note all but the first group of choices indicates
multiple possible logic paths and the possibility of
loops. The first group of choices also require an
alternate event to which restraints from subsequent
triggers will lead in order to avoid a logical open end.

Reason/Why Restraint Code, Other Restraint
Codes and Restraint Description Fields

The second fundamental aspect of RDM is the
systematic recordation of the reason why a restraint has
been placed between two activities. This is
accomplished by the provision of a reason/why code to

 2

each restraint and by further provision of a title or
description field and user defined code fields to
restraints similar to that provided to activities.

In PDM, the distinction between an activity and
restraint may be quite blurred, especially if to the
restraint has been assigned a lag duration between
activities. The main distinction is that to an activity
may be assigned a title or description, while it is not
possible to record any information relating to a
restraint other than relating to its predecessor,
successor and quantum of lag duration. Another
distinction is that durations of activities is generally to
be measured by performance of the activity (in either
days performed, days remaining or percent complete,)
while durations of restraints (lags) are generally
measured by the passage of units of time (days) from a
reported commencement (date.)

RDM permits, encourages and perhaps even requires
some level of explanation or description be given to
restraints as well as activities. At the very minimum,
RDM will request whether the reason for the restraint
is “physical” or “hard logic,” thus indicating that A
must be performed before B (with examples such as
“gravity” or “owner’s specification” being the why for
the restraint,) or that the reason for the restraint is
“resource limitations” (with the specified resource, e.g.
crew, craft, access, dollars, etc., being the why for the
restraint) and that the superintendent or project
manager merely chooses to perform A before B (as
being the most economical of possible choices.) It is
envisioned that RDM software will, if the description
field is left blank, optionally provide a text description
of “PREDS 1000, 1005; SUCCS 1015, 1020.” Other
specialized reason/why code values are discussed
below.

In ADM, restraints may emanate only from the end of
an activity and conclude at the beginning of another
activity. In PDM, restraints may emanate from either
the beginning or end of an activity and conclude at the
beginning or end of another activity. In RDM, a
restraint may emanate from the beginning or end or
from within a partially performed activity and conclude
at the beginning, end or within another activity.
Therefore RDM will distinguish between starting B
until 5 days after A is reported started, and until 5 days
of A have been reported performed (by either reporting
of a percent complete or a remaining duration being 5
days less than the original duration provided.)
Restraint durations in RDM may thus be deemed
independent or dependent upon the activity from which
or to which such duration runs.

Duration Codes

RDM permits (requires) more detailed information
relating to the durations of both activities and

restraints. Durations of activities may be further
defined by use of an activity calendar or resource
calendar. Durations of restraints independent of
measurement of activity progress (being measured
solely from a reported activity start or finish date) may
also be further defined by use of the activity calendar.
Durations of restraints dependent upon the
measurement of activity progress (being measured by
units of scope performed, estimates of remaining
duration, or percent of scope complete) are based on
the calendar of the activity upon which such
measurement is based.

Durations are also subject to three other assigned
characteristics. These are:
• interruptible/continuous,
• performed/clocked/clock-checked, and
• out-of-sequence modified-logic/retained-

logic/progress-override.

The interruptible/continuous attribute to duration
determines how the early start of an activity is to be
calculated. If an activity is restrained by a finish-to-
finish or start-to-finish type of restraint or by a
constraint pushing early finish beyond the calculation
of early start plus remaining duration, there is a
question whether the early start should remain as
calculated based upon its predecessors (and thus the
span of time from the start of the activity until its
completion, including active and inactive periods of
work, will be greater than the original duration entered)
or should the early start be delayed until work may be
performed continuously. The primary purpose of such
designation is to define the early start date to be used
by successor start-to-start or start-to-finish restraints
emanating from the activity.

However, both early start dates should be calculated
and recorded, even though only one may be used for
determining the start of subsequent start-to-successor
restraints. The knowledgeable practitioner may desire
this information to utilize the additional start-float of
the activity, or to start between the two early start dates
with the hope to encourage the predecessor-to-finish
activity to finish early. It is also recommended that
software provide some indicator (by use, for example,
of a “*” or italicized date text) where two possible
early start dates may be reported, and some other
indicator (by use, for example, of a “†” or underlined
date text) where the activity is succeeded by a start-to-
start restraint, and thus it would be important to begin
work “ASAP” even if such would require work on the
activity to be interrupted.

The performed/clocked/clock-check attribute to
duration determines how the duration is to be
decreased during updates. Most activities have scope
where performance may be measured for purposes of

 3

updating. However, some activities, such as curing of
concrete or awaiting review of submittals by the
engineer, are not subject to measurement and are
typically updated by counting the number of days (or
other unit of time) from a calculated or reported start
date. This can be especially bothersome where the
duration is greater than the period of an update, such as
a 28 or 56 day cure period, or a 45 day review period.
Updating in the field thus requires a manual count of
such days and which is often missed and not reported
resulting in errors in the updated schedule.

Inclusion of the performed/clocked/clock-check
attribute permits the scheduler to identify these type of
activity while developing the logic network, thus
reducing the effort for updating to that of recording an
actual start where the attribute is set to clocked. A
special case is provided where progress continues
automatically with the clock, but a visual check should
be made to assure completion, such as for return of an
approval of a submittal. The clock-check attribute will
thus reduce the duration automatically to one day (or
other time unit) requiring a manual entry of actual
finish date (or zero remaining duration) when such is
visually confirmed. Where the attribute is set to
performed, updating is achieved by visual review and
entry of remaining duration or percent complete.

The out-of-sequence modified-logic/retained-
logic/progress-override attribute to duration also
determines how the duration is to be decreased during
updates. If an activity starts prior to the finish of its
predecessor (or prior to the start of its predecessor
where such is by a something-to-start restraint,) there is
a question whether the CPM algorithm should calculate
that work should stop on the started activity until all
predecessor are complete, or may continue without
regard to completion of predecessors. The first option
is known as retained logic, the second as progress
override. As discussed in previous presentations by the
author, initially at the PMI College of Scheduling
conference held in Montreal in 2004 and thence
elsewhere, a third option to be considered is modified
logic, which calculates the early (or continuing) start of
the started activity as the datadate, but set the early
finish as the latter of DD+RD or the early (continued)
start as calculated by the retained logic algorithm.
(This “third way” was first introduced in Montreal as
“modified progress override,” was later renamed
“modified retained logic” in internal discussions of
Primavera who are considering the use thereof, but is
here again renamed as “modified-logic.”)

While it has been suggested that the new modified
logic algorithm should become the standard and that
there should be no further need for the original two
choices, there are situations where the older algorithms
better approximate the real world. An example is
where a restraint between activities is based solely

upon allocation of resources, such as where the logic
sequences the work of a painter from one room to
another, and a second painter is hired and begins work
on Room #2 before Room #1 is finished. We would
expect that the second painter could continue work on
the day after the CPM update even though Room #1 is
not yet painted. In fact, this restraint could then be
ignored in all future updates – while the painting of
Room #1 may be required before electrical and HVAC
trim and possibly many other activities, the path to
project completion will not run from painting Room #1
to painting Room #2. Assuming a robust software
program for implementation, the attribute could be set
to progress override, or at least highlighted for review,
wherever the reason provided for the restraint is
“resource.”

Calendars of Durations of Activities and Restraints

Development of a calendar for use in scheduling
algorithms is a complex and complicated endeavor.
One of the most difficult issues is to set a minimum
unit of duration for the calendar. On some projects,
including most construction projects, the minimum
duration is one day. If the work day begins at 8:00
A.M. and all the predecessors of an activity are
expected to be complete by 10:00 A.M., the
superintendent will not typically mobilize the labor
crew and other resources for that activity until the next
morning at 8:00 A.M. Similarly, even if the work is
being performed 24/7/365, if such work is being
performed in three shifts per day, crews and resources
are typically not mobilized for usage in the middle of a
shift, but are deferred until the start of the next shift
after completion of all predecessors to the new activity
to be performed.

For other projects, including most design projects, the
minimum unit is one hour. Similar to the discussion
for construction, few managers would become
distressed if an engineer, receiving data required to
provide the next step of a design at 10:17 A.M., will
continue to work upon and then button up other work
being performed before commencing upon the new
design work at 11:00 A.M. Even if the minimum unit
is one second, so long as some task may be completed
in other than an increment of the minimum unit, this
issue of elongation (rather than truncation) of the
duration to the next increment must be considered in
development of a CPM algorithm calendar. However,
in a production line or emergency setting, the period of
elongation may be reduced if not eliminated and
meaningful work can be commenced immediately upon
completion of a predecessor activity.

And as projects grow larger and are combined with
other projects into programs and enterprise-wide
programs, the issue grow more complex. A fast-track
or design-build project calendar must contend with an

 4

hourly (or quarter-hourly) calendar for the designers as
well as a daily (or shift) calendar for the construction
crafts. While a robust calendar system will be able to
accommodate both daily, two and three shift per day,
hourly and sub-hourly minimum durations, the transfer
between such calendars is best performed at the zero
duration point-in-time event.

Types of Activities

Although not presented as a new element instituted
with the introduction of RDM, the existence of
differing types of activities should be noted at this
point. Durations of activities, the performance of
which utilize resources, may be via an activity based
calendar or upon a resource based calendar or
calendars. Thus an activity may be performed on any
day (or other time unit) where resources are permitted
onto the project site (or the extended site where the
activity is to be performed,) or may be limited to days
when a resource or multiple resources are available. If
the duration is driven by multiple resources, then it
must be further determined if progress may continue
when any one of multiple resources are available, or
only when all required resources are concurrently
available.

Types of Restraints

In PERT, there are no activities, only events and
restraints (with or without durations) between such
events. In ADM, events are connected by either
activities of specified duration (which also carry logic
between events,) and restraints of zero duration. In
PDM, it is generally understood that there are no
events, but rather only activities (of specified duration)
and restraints (with or without durations) between
activities. These restraints are generally understood to
emanate from the start or the finish of one activity and
connect to the start or finish of another activity. Thus
the four types of restraints available in current popular
CPM software are usually listed as finish-to-start, start-
to-start, finish-to-finish and start-to-finish.

The belief of a limit of four types of restraints between
activities is not totally correct under either the papers
by Dr. Fondahl (credited with the development of PDM
in the 1950s) or the early software programs run on
mainframe computers in the late 1960s, 1970s and
early 1980s. These programs distinguished between a
Start restraint (delaying the start of the successor
activity until OD-RD equals the lag duration – which
must always be less than the duration of the
predecessor activity) and a Begin restraint (measuring
the lag duration based upon clocked time units from the
reported start date.)

Similarly, the programs distinguished between a Finish
restraint (delaying a portion of the successor activity

equal to the lag duration – which must thus always be
less than the duration of the successor activity) and an
End restraint (measuring the lag duration to delay the
last moment of the successor activity.) The Start and
Finish type restraints could be expressed in percent of
predecessor and successor duration respectively. The
Begin and End type restraints, however, could only be
expressed in time units.

Interestingly, it was the Begin restraint that morphed to
the current start-to-start restraint, and the End restraint
that morphed to the current finish-to-finish restraint.
Certainly, the programming effort required to
effectuate such types of restraints is simpler, as there is
no need to check that the lag duration is less than the
activity duration of the predecessor or successor
activity respectively. Therefore, the current restraint
choices may all be classified as independent of the
duration of the activities.

On the other hand, since the old Start and Finish type
of restraints may be expressed as percents of the
predecessor and successor activity durations
respectively (and must thus be verified as being less
than 100% of such durations,) these may be as
dependent upon the duration of the activities. Since the
old Start restraint type involves partial performance of
the predecessor activity duration, RDM has renamed it
to a “Partial-to-Start” restraint type. Similarly, since
the old Finish restraint type involves deferring a
portion of the successor activity duration until the
finish of the predecessor activity, RDM has renamed it
to a “Finish-to-Partial” restraint type.

Data collection and reporting for these two
rediscovered restraint types may use any one of several
formats. For the Partial-to-Start restraint duration,
measurement may be by:
• time units of the predecessor activity performed

before successor activity may begin,
• percent of predecessor activity duration performed

before successor activity may begin,
• fraction of predecessor activity quantity performed

before successor activity may begin, or
• time units of the predecessor activity remaining to

be performed before successor activity may begin.

For the Finish-to-Partial restraint duration,
measurement may be by:
• time units of the successor activity duration

remaining to be performed after finish of the
predecessor activity,

• percent of the successor activity duration
remaining to be performed after finish of the
predecessor activity,

• fraction of the successor activity duration
remaining to be performed after finish of the
predecessor activity, or

 5

• maximum time units of the successor activity
duration that may be performed prior to finish of
the predecessor activity.

Exacerbating the issue are several questions relating to
restraint durations. Obviously, the Partial-to-Start and
Finish-to-Partial type of restraints are tied to the
calendar of the activity of which the restraint duration
is a subset of the activity duration. The Start-to-Start
and Finish-to-Finish type of restraints must be assigned
their own calendar, as well as the Finish-to-Start and
Start-to-Finish restraint types.

Partial-to-Start and Finish-to-Partial type of restraints
will mimic the activity to which duration is tied with
regard to interruptability and means of measurement
(performed/clocked/clock-check,) while SS, FF, FS
and SF type of restraints will default to continuous and
clocked by definition.

In situations of out-of-sequence progress, Partial-to-
Start and Finish-to-Partial restraint durations will be
linked to the modified-logic/retained-logic/progress-
override choice of the respective predecessor or
successor activity duration. However, where
measurement of the restraint duration is independent of
the measured progress of the predecessor or successor
activity, such as for SS, FF, FS and SF restraints, the
same issues for measurement of restraint durations
arise as for activity durations performed out-of-
sequence.

When considering all of these issues, there are some
six types of restraints between activities with each
having three or four sub-types. Note a seventh type
(Partial-to-Partial) is listed but would not be used due
to the need for two restraint durations and restraint
duration codes and difficulties of such implementation.
However, a fix is provided for such situations. A
similar fix may be provide if two types of restraints are
indicated, such as “start activity B 3 days after 50% of
activity A is complete.” The listed restraints are:
• Finish-to-Start – update restraint duration by

clocked time units from predecessor activity
• update restraint duration always from

calculated early finish of activity
• update restraint duration from actual finish of

activity if reported
• update restraint duration to minimum of ONE

until calculated early finish equals datadate
• Start-to-Start – update restraint duration by

clocked time units from predecessor activity
• update restraint duration always from

calculated early start of activity
• update restraint duration from actual start of

activity if reported
• update restraint duration to minimum of ONE

until calculated early start equals datadate

• Partial-to-Start – update restraint duration from
progress of predecessor activity
• restraint runs from event within predecessor

activity at duration from event at activity start
• formats: time units complete, percent

complete, quantity units complete, time units
remaining

• Finish-to-Finish – update restraint duration by
clocked time units from predecessor activity
• update restraint duration always from

calculated early finish of activity
• update restraint duration from actual finish of

activity if reported
• update restraint duration to minimum of ONE

until calculated early finish equals datadate
• Finish-to-Partial – update restraint duration from

progress of successor activity
• restraint runs to event within successor

activity at duration to event at activity finish
• formats: time units remaining, percent

remaining, quantity units remaining, time
units complete

• Start-to-Finish – update restraint duration by
clocked time units from predecessor activity
• update restraint duration always from

calculated early start of activity
• update restraint duration from actual start of

activity if reported
• update restraint duration to minimum of ONE

until calculated early start equals datadate
• Partial-to-Partial – theoretical – would require two

restraint durations
• fix is to run Partial-to-Start to independent

event, then Finish-to-Partial to successor
activity

The decision on how to designate the type and subtype
of a restraint, to avoid confusion amongst individuals
familiar with the limited choices of PDM, remains an
open question. One possible solution involves two
codes, one for type of restraint and the other for type of
restraint duration (or lag.) These may be expressed
(with ## being a number) as: FS##E, FS##A, FS##M,
SS##E, SS##A, SS##M, PS##C, PS##P,
PS##/##Q,PS##R, FF##E, FF##A, FF##M, FP##R,
FP##P, FP##/##Q, FP##C, SF##E, SF##A, SF##M.

Relationship Codes

While the event, duration, reason/why and expanded
lead/lag codes all involve additional recording of the
information thought (but perhaps not expressed) by
project managers and their team members in crafting a
CPM (or any project plan or schedule,) the relationship
code is one that is generated during the calculation (by
hand or computer) of a CPM. The purpose of the
relationship code is to ascertain or calculate the
relationships between the predecessor and successor

 6

activities (and/or events) of a restraint. Any similarity
or difference between the predecessor and successor
may be noted and reported. The quantum or quality of
differences may also be noted and reported. Actions,
either manually or via the computer software
implementation, may be performed based upon the
noted similarities and differences.

A simple use for a relationship code may be to
highlight whenever a user defined activity code, such
as code for which subcontractor is performing work,
changes. Since the prime contractor is responsible for
coordination of (or between) subcontractors, but not
responsible for the internal coordination of a
subcontractor’s scope of work, these are the
“handoff’s” which must be carefully watched. This is
perhaps similar to a game of football – it is rare that a
turnover will occur while running with the ball – it is
more common to have a turnover while passing the
ball. Since the typical bar-chart display of a schedule
does not provide an easy view of the relationships with
other activities, it is all the more important that those
restraints revealing such “handoffs” be highlighted.

Handoffs between entities that have previously
encountered problems, such as perhaps that between
the mechanical and electrical subcontractors, may be
highlighted as calling for a 1-day coordination period
(on a 5-day/week calendar.) A more advanced use may
be to assure that there exists at least a 2-day lag (on a
5-day/week calendar) when a crew moves from one
location on a jobsite to another in order to account for
the necessary mini-demobilization and remobilization,
tearing down and rebuilding of scaffolding, etc.

Another use is as a means to root out possibly
miscoded “P” physical reason restraints may be where
relationships indicate the same resource usage but
differing locations or structures. Similarly, any serious
change in location for a “physical” type of restraint
should be flagged for further review. In fact, it is
doubtful that it is today possible to dream of all the
uses that a new generation of schedulers may make of
the implementation of such a relationship coding
algorithm.

The means to communicate, for example, a “handoff”
between subcontractors may be by use of an alternate
font (say italic and green) for the predecessor and
successor activity descriptions and a logic line between
bars (on the bar-chart view) or activity boxes (in pure
logic view) in an alternate aspect (say dashed and
green, with dashed and red indicating a “handoff” that
is on the critical path.) Or flagged “P” physical reason
restraints may be in a blinking font during the
diagnostic review.

Additional Attributes of Events, Activities and
Restraints

The advent of PDM, where the calculated early finish
of an activity may be driven by a finish-to-finish
restraint rather than the early start plus duration, and
the calculated late start driven by a start-to-start
restraint rather than late finish minus duration, requires
the recognition of several new activity attributes.
These include a Start Total Float, Finish Total Float
and Most Critical Total Float, hereafter notated at
“STF”, “FTF” and “TF.” Many popular CPM software
programs will permit the user to calculate one (and
only one) of these three choices, while all three are of
value to the knowledgeable scheduler.

For most applications, the TF attribute is the one that
the scheduler and project team will review. However,
the STF and FTF attributes also convey information. A
overly high FTF value is indicative of a “hidden” open
end, where the activity does not have a finish-to-
something successor, and thus need never finish. This
open end may be caused by poor initial logic, or may
not be discovered until updating the project when work
is performed out-of-sequence and choosing a “progress
override” calculation algorithm. A overly high STF
value may similarly be indicative of a “hidden” open
end (assuming use of interruptible activity durations.)
The very fact that the STF does not equal the FTF
conveys real information to the scheduler (and project
team) that the activity completion is driven by
restraints and not by activity duration. (Thus
increasing resources, providing overtime, etc., will not
speed the completion of this activity!)

RDM complements these features with additional
attributes. The early start and early finish attributes
represent the earliest times that an activity may start or
finish, based upon the datadate. The late start and late
finish attributes represent the latest time by which an
activity must start or finish if earliest possible project
completion is not to be delayed. These attributes are
typically denoted as ES, EF, LS and LF. Similarly for
an event, the attributes time-early time and time-late
time (TE and TL) represent the earliest time that an
event may occur, based upon the datadate, and latest
time by which it must occur, if not to delay completion
of the project.

RDM adds a middle set of attributes for the latest time
by which an event or activity must occur, start or
finish, so that a specified successor event or activity
may occur, start or finish as early as though this
restraint did not exist. These attributes are thus called
just-in-time time, just-in-time start and just-in-time
finish. These attributes are denoted as TJ, JLS and JLF.
The new attributes, in turn, are used to calculate
additional just-in-time total float attributes of SJTF

 7

(equal to LS-JLS,) FJTF (equal to LF-JLF) and JTF
(equal to the more critical of the two.)

Specialized Reason/Why Codes

The means by which a restraint is designated as not to
drive its successor (assuming its successor does have
another predecessor which is driving,) is to set the
restraint reason code as “J” for “just-in-time.” This is a
specialized version of the “P” physical restraint, and
will be treated as a “P” reason for all other purposes
other than during the backward pass calculations.
During the backward pass calculation, the normal
RDM algorithm of {LFPRED RESTRAINT = LSSUCC

ACTIVITY} is changed to {LFPRED RESTRAINT =
ESSUCC ACTIVITY.} The resultant TJ, JLS and JLF times
calculated will therefore be somewhere between the
early and late times. If the restraint carrying the “J”
reason is the sole restraint following a preceding event
or activity, the JTF of the restraint will equal the free
float (“FF”) of the restraint or immediate preceding
event or activity. However, that is where any similarity
of JTF to FF will end; the JTF will continue backward
through the string of activities leading to the designated
restraint, while the FF attribute is non-zero only for the
last activity in the string.

Another set of specialized restraint reason codes relate
to automated resource leveling routines and are
generated by the RDM leveling algorithm to selectively
replace and augment an “R” or “resource” reason. The
first is the “S” or “suppressed” reason. When leveling
upon a selection of a single resource, or multiple
recourses, the first step of the scheduler should be to
carefully review all restraints and delete those which
carry those resources. If this is not done, the leveling
routine is “hard-wired” to allocate the resource when
released by a completed activity to a specific activity
seeking resources, rather than allowing the computer to
choose the most advantageous allocation. The RDM
leveling algorithm therefore first converts all restraints
from “R” to “S” where the “why” is any of the
resources being subjected to the leveling algorithm.

The RDM leveling algorithm then augments the
specified logic restraints with additional restraints
indicating from which activity the last resource was
released that now permits the new successor activity to
proceed. These added restraints are provided a reason
code of “L” or “leveled.” In viewing the pure logic
diagram or other graphics thereafter, the scheduler may
see the logic used by the leveling algorithm. The
scheduler may choose to display, or not, the suppressed
“S” logic, to see where it has been replaced, or
confirmed as being correct (where the “S” restraint is
alongside an “L” restraint.) Upon rescheduling or
releveling, all “L” restraints are deleted, all “S”
restraints are reset to “R” and then may be set again to

“S” depending upon the parameters of the scheduler’s
request for leveling.

Specialized Types of Events

As previously noted, the concept of events is central to
a proper logic network and therefore to RDM. A
number of limitations of CPM may be remedied by use
of specialized types of events. In the original ADM
version of CPM and in PERT, where two or more logic
restraints or activity arrows (also carrying logic) or any
combination thereof enter an event (or node,)
processing stops until the early finish of each such
restraint or activity has been calculated. Then the early
start of the event, and subsequent restraints or
activities, is calculated as the latest of such early
finishes.

There are other possible outcomes for the merging of
two logic paths, as discussed in the GERT literature of
the 1950s through the present, but not readily available
in commercial software products. Several specialized
event types, supported by fully functional RDM, are
discussed here.

The first of the specialized event types to be discussed
is setting of the early occurrence time based upon the
1st, 2nd, nth, or last early finish of multiple predecessor
restraints. In the default setting or event type, the early
occurrence of an event having multiple predecessor
logic will be the last or latest early finish of all such
predecessors. However, an event type may be coded to
set the early occurrence of the event to the first, second
or nth early finish of all such predecessors. Part of the
algorithm for implementation of this feature includes
the diagnostic to assure that none of the predecessors
are “exclusive” or emanating from activities that are
not followed by some other successor in such manner
to not create an open end.

A second class of special event types is to provide a
choice of successor logic strings from an event, rather
than indicating that all activities following such event
may now be performed. This is the GERT “·OR·”
statement to complement the PERT or CPM “·AND·”
statement. The choice of logic restraint successor may
be by a random number generator (RNG) or by an
explicit statement tying such to some attribute of
another event. As examples, “A will be followed by B
if RNG is ≥90%, by C if RNG is ≥50%, else by D,” “A
will be followed by B if actual finish reprot4ed for D,
otherwise C.”

Other specialized event types include those required to
implement those discussed above, such as to provide
closure to a string of activities that may be abandoned
based upon the circumstances encountered, and to
reenter a loop, such as where a test, previously failed,
is now to be retaken.

 8

Specialized Types of Activities

There are also possible a number of specialized activity
types, many of which have been implemented in
commercial software products, some of which have
not. Activity duration is usually based upon a project
calendar indicating when the activity may occur.
Often, the determining factor for performance is when
the chosen resources for such activity are available.
Thus, commercial software, such as that marketed by
Primavera Systems, provides a choice between having
an activity duration driven by the project calendar or
driven by the calendar of a resource. Prior versions of
Primavera also provided, when two or more resources
may be considered as driving, a choice between the
copulative and disjunctive, or between requiring all
driving resources to be present to advance progress for
one time unit, and requiring any one of several such
driving resources to be present. These were known as
meeting and independent activity types respectively.
However, even if all driving resources are available for
a specific time or date, the activity calendar must still
permit work to be performed for that time period.

Other specialized activity types may include
hammocks, with or without logic checking, steps or
tasks, and fragnetted activities. Hammocks
traditionally have not carried logic, but rather have
been used to summarize a group of activities between
two points in time. In ADM and PERT, this was
accomplished by drawing the hammock between two
event nodes; in PDM this was approximated by
insertion of an activity restrained from the start of one
activity and restraining the finish of some other
activity. Traditionally, a manual or automated check is
also made to assure that the hammock spans actual
logic and is not merely connecting any two events or
activities. Misuse of hammocks in commercial
software that does not provide this type of validation
check can lead to the humorous instance of update
progress on one chain of activities leading to the start
of a hammock leading to non-progress on a separate
chain of activities leading to the finish of the
hammock, causing the hammock to report a negative
duration.

Since hammocks are typically used for management
overview, rather than day-to-day field operations, the
occasional error introduced by the lack of logic
validation may perhaps be tolerated. However, the
miscommunication to senior management that one
milestone leads to another, rather than that it has
merely been planned to occur prior to the other, should
be noted as a different activity type than a proper
hammock.

The concept of “steps” or “task” activities is to split an
activity into two or more such tasks which each
contribute to the total duration of the activity, but

cannot be quantified as to timing within the activity.
An example is the card game of “52 pickup” where we
can estimate the total duration for picking up all of the
card, and we can estimate the duration for picking up
any subset of the cards, but we would not normally
specify a sequence or order of picking up such cards.
Thus, since face card represent 4/13th and number cards
9/13th of the total (or 31% v 69%,) if we were to report
that we have picked up 1/3rd of the face cards and 2/3rd
of the number cards, the step algorithm will compute
that 56% of the activity has been complete and
calculate the appropriate remaining duration.

The reintroduction of logic validation for hammocks
permits another new feature of RDM, that of a
hammock that does carry logic and a given duration,
but with its remaining duration determined by the
reported progress of the activities within the hammock.
This is designated a Pacing Hammock and treats a
group of activities having common (if not immediate)
predecessor and successor events, as connected by the
pacing hammock, much like the “steps” of a single
activity. An example where this may be useful is
where several pumps may be rigged, set, piped,
powered, etc., onto a common foundation slab.
Because the various activities may be performed by
differing crews or subcontractors, they must be
separately itemized. However, although only one or
two pumps are rigged, etc. at a time, the order is not
subject to pre-planning and will depend upon field
conditions or chance. Thus the total time of these
parallel chains of activities will be greater than the
duration of any one chain. The algorithm behind the
pacing hammock totals the original and remaining
duration of all activities which have a common
predecessor event and common successor event,
compares such as a percentile, and applies that
percentile to the original duration of the pacing
hammock to determine its remaining duration.

Unlike a traditional hammock (with or without logic
validation,) a pacing hammock contains operational
information and should be printed on field reports, and
such may still be too detailed for management reports.
Perhaps a different name should be applied to
distinguish the two types of hammock. A similar issue
should be noted for the activities that are part of pacing
hammock. It may be desired that the detail of these
activities, or fragnets, should be generally be masked
from reports on the entire project and reserved for
detailed “three week look-ahead” and similar reports.

Specialized Types of Restraints

In ADM, the only means to split the scope of one
activity into two or more sequential scopes is to
physically split the activity into two or more activities.
In PDM, a scope may be so split explicitly by a
percentage-complete-type of start-to-start restraint (as

 9

with the 1970s MSCS software system) or by
implication with currently available commercial
software such as Primavera. (Note that Deltek’s
OpenPlan software currently supports a percentage-
complete-type of start-to-start restraint, but does not
support a matching finish-to-finish restraint.) RDM
accomplishes the split by explicitly using a partial-to-
start restraint which creates an event node within the
preceding activity (and similarly supports a finish-to-
partial restraint which creates an event node within the
succeeding activity.) These event nodes may then be
further annotated by including an explicit explanation
of how the scope has been split in the event description
field.

RDM also considers the situation where two (or more)
sequential activities are to combined into one
continuous activity. This is analogous to setting the
activity duration code switch to continuous rather than
interruptible. The virtual linking of these activities is
accomplished by use of a additional specialized type of
restraint, designated as a Contiguous restraint type.

A similar result may be accomplished using existing
commercial software products by use of a free-float-
constraint, assuming that the activity to be deferred
until a successor activity may start has no other
successors. The RDM activity preceding the
contiguous restraint may have other successors, and
they too will be deferred until the successor to the
contiguous restraint may start.

Another specialized type of restraint introduced in
RDM is the Concurrent restraint. This indicates that
two or more activities must be performed concurrently.
As is understood in CPM, the fact that two activities
share the same predecessor does not guarantee that
they must be performed concurrently, but only that
such is possible. Once the common predecessor(s) of
the two are finished, each of the two may be performed
independently. The concurrent restraint changes this
and indicates a common dependency, such as the
placement of an MSE wall and backfill of such wall, or
the activities of a surgeon and anesthesiologist.

Other specialized types of restraint may be added as
users desire, such as a Duplicate restraint combining
the start-to-start and finish-to-finish restraints and
similar to the old MSCS “Z” restraint. However,
discussion of support for such extensions should be left
for another day.

Where to Next

One of the disappointments of PDM has been the lack
of standardization in notation and calculation algoritms
such that the same information fed to two software
products may provide differing results. In an effort to
minimize this type of problem for RDM, a standard on
both notation and calculation algorithms is being
developed and will be administered via a Certification
Trademark RDCPM™. Public comment upon the draft
standards, as promulgated in this paper, are welcome,
and should be sent to rdcpm@fplotnick.com.

Conclusion

The RDM or Relationship Diagramming Method
variant of CPM can provide a robust and
mathematically sound improvement to the field of
Planning and Scheduling. It is currently being
examined for implementation by software vendors,
such as Primavera Systems.

Endnotes
1. CPM in Construction Management, 5th and 6th

Editions, James J. O’Brien and Fredric L. Plotnick,
McGraw-Hill, 1999 and 2005.

About the Author

Fredric L. Plotnick, Esq., PE, is CEO and principal
consultant of Engineering & Property Management
Consultants, Inc. He has bachelors and masters degrees
in civil engineering and is a registered Professional
Engineer in Pennsylvania, New Jersey and Florida. He
is also an attorney and a member of the Bars of
Pennsylvania, New Jersey, and Florida. Mr. Plotnick is
an adjunct professor of the departments of Engineering
Management, Civil Engineering and Construction
Management at Drexel University, Philadelphia,
Pennsylvania. He is a past president of the Philadelphia
Chapter of the Pennsylvania Society of Professional
Engineers, and a past Construction Group chair of the
Philadelphia Section of the American Society of Civil
Engineers. Mr. Plotnick is currently Director of
Academic Liaison and Chair of the Technical Research
Track of the annual conference of the PMI Project
Management Institute’s College of Scheduling, as well
as a regular speaker for the PMI College of
Performance Management and the AACEi Association
for the Advancement of Cost Engineering
International. Additional information may be found at
www.fplotnick.com

 10

mailto:rdcpm@fplotnick.com
http://www.fplotnick.com/

	
	Fredric L. Plotnick, Esq., P.E., Drexel University in Philadelphia, Pennsylvania
	Abstract

